Shipping Multiple Items by Capacitated Vehicles: An Optimal Dynamic Programming Approach
نویسندگان
چکیده
We consider a system in which multiple-items are transferred from a warehouse or a plant to a retailer through identical capacitated vehicles, or freight wagons. Any mixture of the items may be loaded on a vehicle. The retailer is facing dynamic deterministic demand for several items, over a finite planning horizon. A vehicle incurs a fixed cost for each trip made from the warehouse to the retailer. In addition, there exist item dependent variable shipping costs and inventory holding costs at the retailer, which are both constant over time. The objective is to find a shipment schedule that minimizes the total cost, while satisfying demand on time. We address and partially resolve the question regarding the problem’s complexity by introducing a dynamic programming algorithm whose complexity is polynomial for a fixed number of items, but exponential otherwise. Our dynamic programming formulation is based on properties satisfied by the optimal solution, and is using an innovative way for partitioning the problem into sub-problems. (Inventory/Production; Multi-Item; Dynamic Programming) Introduction and Literature Review Consider a system in which items of several types are transferred from a warehouse or a plant to a retailer through identical vehicles, or by identical freight wagons, each with a finite capacity. We assume that the transportation activity is outsourced to exogenous freight carriers so that the number of vehicles available in a period is unlimited. Any mixture of items may be loaded on a vehicle as long as the capacity restriction is not violated. The retailer is facing dynamic deterministic demands for several items, over a finite planning horizon. The carrier charges a fixed cost for each vehicle that is dispatched from the warehouse to the retailer, in addition to item-dependent variable shipping costs. Items that are stored at the retailer at the end of a period incur item-dependent inventory holding costs. Both the item-specific shipping costs and inventory holding costs are constant over time. The objective is to find a shipment schedule that minimizes the total cost, while satisfying demand on time. The same problem may arise in a production environment, in which production decisions of multiple items have to be made, using a certain resource. A fixed cost is associated with the production of a batch (or part of it) of items, where each batch is of limited quantity. A specific variant of either the transportation or the production setting that we refer to in the sequel occurs when there is a capacity restriction in each of the periods, i.e., the number of available vehicles or batches in each period is limited to one. In the case where multiple vehicles may be used in each period (each of limited capacity, and each incurs a fixed cost), we refer to the problem as the Multi-Item with Multiple Vehicles (MIMV) problem, which is the focus of this paper. The related problem, in which only one vehicle may be used, is referred to as the Multi-Item with a Single Vehicle (MISV) problem. Capacity restrictions exist in most realistic transportation or production systems, but are often ignored. One apparent reason for this phenomenon is the difficulty associated with the consideration of capacitated resources, together with non-stationary demand, even in relatively simple systems, see the literature review below. Another issue, which is not well addressed in the literature, is the consideration of transportation in multiple batches, and in particular when multiple items are involved. In this paper, we analyze the problem scenario described above, which includes all three issues, namely, transportation of several different items by multiple capacitated vehicles.
منابع مشابه
CAPACITATED VEHICLE ROUTING PROBLEM WITH VEHICLES HIRE OR PURCHASE DECISION: MODELING AND SOLUTION APPROACHES
The overall cost of companies dealing with the distribution tasks is considerably affected by the way that distributing vehicles are procured. In this paper, a more practical version of capacitated vehicle routing problem (CVRP) in which the decision of purchase or hire of vehicles is simultaneously considered is investigated. In CVRP model capacitated vehicles start from a single depot simulta...
متن کاملA Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm
The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...
متن کاملConsidering different kinds of vehicles in a hierarchical hub location model
In this study a hierarchical hub location problem with two layers is considered. The first layer includes small hubs and the second one includes a star-shaped network central hub. The considered case is a cargo delivery network where there is hierarchy between hubs. All the hubs and links are capacitated and there are three kinds of commodities for each of which there is a special kind of vehic...
متن کاملEnergy cost minimization in an electric vehicle solar charging station via dynamic programming
Environmental crisis and shortage of fossil fuels make Electric Vehicles (EVs) alternatives for conventional vehicles. With growing numbers of EVs, the coordinated charging is necessary to prevent problems such as large peaks and power losses for grid and to minimize charging costs of EVs for EV owners. Therefore, this paper proposes an optimal charging schedule based on Dynamic Programming (DP...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Transportation Science
دوره 39 شماره
صفحات -
تاریخ انتشار 2005